Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.067$
$w R$ factor $=0.136$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[cis-diaqua(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ cobalt(II) $]-\mu_{2}$ - 5 -sulfonatosalicylato- $\left.\kappa^{2} O: O^{\prime}\right]$

In the title one-dimensional chain complex, $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, each $\mathrm{Co}^{\text {II }}$ atom displays an octahedral geometry. Hydrogen-bonding interactions between chains generate a two-dimensional architecture.

Comment

Recently, three metal complexes with the formula [$M(\mathrm{Hssal})$ (phen) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}\left(M^{2+}=\mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}\right.$ and $\mathrm{Mn}^{2+} ; \mathrm{Hssal}^{2-}$ is the 5sulfonatosalicylate dianion and phen is 1,10 -phenanthroline) have been synthesized and structurally characterized (Chen et al., 2003; Fan \& Zhu, 2005). Each metal atom in these complexes adopts an octahedral geometry defined by two N donors from one phen ligand, two O atoms, one from a sulfonyl and one from a carboxyl group of two different Hssal^{2-} ligands, and two O atoms from two cis-arranged water molecules. The fourth crystal structure of such a complex containing the $\mathrm{Co}^{\mathrm{II}}$ atom, viz. the title compound, (I), is presented here.

(I)

The coordination environment around the $\mathrm{Co}^{\mathrm{II}}$ atom is shown in Fig. 1. The molecular structure is a one-dimensional chain assembled by $\left[\mathrm{Co}(\mathrm{Hssal})(\mathrm{phen})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ units through the bridging Hssal^{2-} ligands (Fig. 2). In the chain, intramolecular hydrogen bonds are formed between the hydroxy group and coordinated carboxyl O atom, and between the uncoordinated carboxyl oxygen atom and the water molecule (O2w). Between chains, water molecules and sulfonyl O atoms form intermolecular hydrogen bonds, giving rise to a twodimensional hydrogen-bonding network (Fig. 3 and Table 2).

Comparison of (I) with analogous complexes (II)-(IV), $\left[M(\text { Hssal })(\text { phen })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}\left[\right.$ for (II), $M^{2+}=\mathrm{Cu}^{2+}$; for (III), $M^{2+}=$ Zn^{2+}; for (IV), $M^{2+}=\mathrm{Mn}^{2+}$) shows some interesting features in the coordination geometries of the four complexes (Table 3). The geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom in (II) is very distorted

Received 13 July 2005 Accepted 18 July 2005 Online 23 July 2005
\qquad

Figure 1
An ORTEP-3 (Farrugia, 1997) view of a segment of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines [symmetry code: (i) $x, \frac{1}{2}-y,-\frac{1}{2}+z$].
octahedral as a result of the Jahn-Teller effect, while the geometries around the $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ atoms are similar, and associated bond lengths, such as $\mathrm{M}-\mathrm{O} w, \mathrm{M}-\mathrm{N}, \mathrm{M}-\mathrm{O}$ $\left(\mathrm{COO}^{-}\right)$and $\mathrm{M}-\mathrm{O}\left(\mathrm{SO}_{3}^{-}\right)$in (IV), are longer than those in (I) and (III). Therefore, further investigation of [M (Hssal)(phen) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ complexes $\left(M^{2+}=\mathrm{Ni}^{2+}, \mathrm{Fe}^{2+}\right.$ and $\left.\mathrm{Cr}^{2+}\right)$ will provide much information on coordination geometries.

Experimental

A mixture of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.238 \mathrm{~g}, 1.0 \mathrm{mmol}), 5$-sulfosalicylic acid dihydrate ($0.051 \mathrm{~g}, 0.20 \mathrm{mmol}$), and pyridine ($1 \mathrm{ml}, 4 \%$) in water (20 ml) was stirred at room temperature for $12 \mathrm{~h} .1,10$-Phenanthroline $(0.041 \mathrm{~g}, 0.20 \mathrm{mmol})$ was then added. The resulting solution was put aside and the solvent allowed to evaporate. Red block-shaped crystals of (I) were obtained after four weeks.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=491.33$
Monoclinic, $P 2_{1} / c$
$a=14.3102$ (8) \AA
$b=7.6342$ (4) \AA 。
$c=18.5783$ (10) \AA
$\beta=107.637$ (1) ${ }^{\circ}$
$V=1934.22(18) \AA^{3}$
$Z=4$
Data collection
Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.772, T_{\text {max }}=0.876$
10606 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& D_{x}=1.687 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4391 \\
& \quad \text { reflections } \\
& \theta=2.3-28.2^{\circ} \\
& \mu=1.05 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.26 \times 0.22 \times 0.13 \mathrm{~mm} \\
& \\
& \\
& 3786 \text { independent reflections } \\
& 3674 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.025 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=-8 \rightarrow 9 \\
& l=-22 \rightarrow 13 \\
& \\
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0326 P)^{2}\right. \\
\quad+5.8354 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.56 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.43 \text { e } \AA^{-3}
\end{array}
\end{aligned}
$$

Figure 2
A view of the one-dimensional chain in (I). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.

Figure 3
A view of the two-dimensional hydrogen-bonding (dashed lines) network for (I). The phen and H atoms have been omitted for clarity.

Table 1
Selected interatomic distances (\AA).

$\mathrm{Co} 1-\mathrm{O} 1$	$2.047(3)$	$\mathrm{Co} 1-\mathrm{N} 2$	$2.113(4)$
$\mathrm{Co} 1-\mathrm{O}{ }^{\mathrm{i}}$	$2.151(3)$	$\mathrm{S} 1-\mathrm{O} 5$	$1.446(3)$
$\mathrm{Co} 1-\mathrm{O} 1 w$	$2.032(3)$	$\mathrm{S} 1-\mathrm{O} 6$	$1.450(3)$
$\mathrm{Co} 1-\mathrm{O} 2 w$	$2.151(3)$	$\mathrm{S} 1-\mathrm{O} 4$	$1.464(3)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.132(4)$		

Symmetry code: (i) $x,-y+\frac{1}{2} z-\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 4^{\mathrm{ii}}$	$0.85(1)$	$1.87(1)$	$2.712(4)$	$177(5)$
$\mathrm{O} 1 w-\mathrm{H} 2 w 1 \cdots 4^{\mathrm{iii}}$	$0.85(4)$	$1.87(4)$	$2.724(4)$	$178(5)$
$\mathrm{O} 2 w-\mathrm{H} 1 w 2 \cdots 5^{\mathrm{ii}}$	$0.84(4)$	$2.00(4)$	$2.828(4)$	$166(4)$
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 2$	$0.85(1)$	$1.89(2)$	$2.698(4)$	$160(5)$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1$	$0.84(4)$	$1.80(3)$	$2.579(5)$	$152(6)$

Symmetry codes: (ii) $x,-y-\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+1,-y,-z+1$.

Table 3
Comparative geometrical parameters (\AA) for $\left[M(\mathrm{Hssal})(\mathrm{phen})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ complexes.

Bond length	(II)	(III)	(IV)
$M-\mathrm{O} w$	$1.9537(19)$	$2.0361(14)$	$2.2316(14)$
$M-\mathrm{O} w$	$2.418(2)$	$2.1615(14)$	$2.1255(14)$
$M-\mathrm{N}$	$2.010(2)$	$2.1288(16)$	$2.2659(15)$
$M-\mathrm{N}$	$2.017(2)$	$2.1438(16)$	$2.2447(15)$
$M-\mathrm{O}\left(\mathrm{COO}^{-}\right)$	$1.9529(17)$	$2.0373(13)$	$2.1174(13)$
$M-\mathrm{O}\left(\mathrm{SO}_{3}{ }^{-}\right)$	$2.3791(17)$	$2.1754(13)$	$2.1835(12)$

metal-organic papers

All aromatic H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water and hydroxy H atoms were located in a difference Fourier map and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and a fixed isotropic displacement parameter of $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (50073019).

References

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z. F., Shi, S. M., Hu, R. X., Zhang, M., Liang, H. \& Zhou, Z. Y. (2003). Chin. J. Chem. 21, 1059-1065.
Fan, S. R. \& Zhu, L. G. (2005). Acta Cryst. E61, m1298-m1300.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

