metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.007 Å R factor = 0.067 wR factor = 0.136 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[cis-diaqua(1,10-phenanthroline- $\kappa^2 N, N'$)cobalt(II)]- μ_2 -5-sulfonatosalicylato- $\kappa^2 O:O'$]

In the title one-dimensional chain complex, $[Co(C_7H_4O_6S)-(C_{12}H_8N_2)(H_2O)_2]_n$, each Co^{II} atom displays an octahedral geometry. Hydrogen-bonding interactions between chains generate a two-dimensional architecture.

Received 13 July 2005 Accepted 18 July 2005 Online 23 July 2005

Comment

Recently, three metal complexes with the formula $[M(\text{Hssal})-(\text{phen})(\text{H}_2\text{O})_2]_n$ ($M^{2+} = \text{Cu}^{2+}$, Zn^{2+} and Mn^{2+} ; Hssal^{2-} is the 5-sulfonatosalicylate dianion and phen is 1,10-phenanthroline) have been synthesized and structurally characterized (Chen *et al.*, 2003; Fan & Zhu, 2005). Each metal atom in these complexes adopts an octahedral geometry defined by two N donors from one phen ligand, two O atoms, one from a sulfonyl and one from a carboxyl group of two different Hssal^{2-} ligands, and two O atoms from two *cis*-arranged water molecules. The fourth crystal structure of such a complex containing the Co^{II} atom, *viz*. the title compound, (I), is presented here.

The coordination environment around the Co^{II} atom is shown in Fig. 1. The molecular structure is a one-dimensional chain assembled by $[Co(Hssal)(phen)(H_2O)_2]$ units through the bridging Hssal^{2–} ligands (Fig. 2). In the chain, intramolecular hydrogen bonds are formed between the hydroxy group and coordinated carboxyl O atom, and between the uncoordinated carboxyl oxygen atom and the water molecule (O2w). Between chains, water molecules and sulfonyl O atoms form intermolecular hydrogen bonds, giving rise to a twodimensional hydrogen-bonding network (Fig. 3 and Table 2).

Comparison of (I) with analogous complexes (II)–(IV), $[M(\text{Hssal})(\text{phen})(\text{H}_2\text{O})_2]_n$ [for (II), $M^{2+} = \text{Cu}^{2+}$; for (III), $M^{2+} = \text{Zn}^{2+}$; for (IV), $M^{2+} = \text{Mn}^{2+}$) shows some interesting features in the coordination geometries of the four complexes (Table 3). The geometry around the Cu^{II} atom in (II) is very distorted

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

An *ORTEP-3* (Farrugia, 1997) view of a segment of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines [symmetry code: (i) $x, \frac{1}{2} - y, -\frac{1}{2} + z$].

octahedral as a result of the Jahn–Teller effect, while the geometries around the Co^{II} and Zn^{II} atoms are similar, and associated bond lengths, such as M–Ow, M–N, M–O (COO⁻) and M–O (SO₃⁻) in (IV), are longer than those in (I) and (III). Therefore, further investigation of $[M(\text{Hssal})-(\text{phen})(\text{H}_2\text{O})_2]_n$ complexes ($M^{2+} = \text{Ni}^{2+}$, Fe²⁺ and Cr²⁺) will provide much information on coordination geometries.

Experimental

A mixture of $CoCl_2 \cdot 6H_2O$ (0.238 g, 1.0 mmol), 5-sulfosalicylic acid dihydrate (0.051 g, 0.20 mmol), and pyridine (1 ml, 4%) in water (20 ml) was stirred at room temperature for 12 h. 1,10-Phenanthroline (0.041 g, 0.20 mmol) was then added. The resulting solution was put aside and the solvent allowed to evaporate. Red block-shaped crystals of (I) were obtained after four weeks.

Crystal data

S = 1.303786 reflections

295 parameters

$[Co(C_7H_4O_6S)(C_{12}H_8N_2)(H_2O)_2]$	$D_x = 1.687 \text{ Mg m}^{-3}$
$M_r = 491.33$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 4391
$a = 14.3102 (8) \text{\AA}$	reflections
b = 7.6342 (4) Å	$\theta = 2.3 - 28.2^{\circ}$
c = 18.5783 (10) Å	$\mu = 1.05 \text{ mm}^{-1}$
$\beta = 107.637 \ (1)^{\circ}$	T = 295 (2) K
V = 1934.22 (18) Å ³	Block, red
Z = 4	0.26 \times 0.22 \times 0.13 mm
Data collection	
Bruker APEX area-detector	3786 independent reflections
diffractometer	3674 reflections with $I > 2\sigma(I)$
φ and φ scans	$R_{int} = 0.025$
Absorption correction: multi-scan	$\theta_{\text{max}} = 26.0^{\circ}$
(SADABS: Sheldrick 1996)	$h = -17 \rightarrow 17$
T = 0.772 $T = 0.876$	$k = -8 \rightarrow 9$
10606 measured reflections	$l = -22 \rightarrow 13$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0326P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.067$	+ 5.8354P]
$wR(F^2) = 0.136$	where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Figure 2

A view of the one-dimensional chain in (I). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.

Figure 3

A view of the two-dimensional hydrogen-bonding (dashed lines) network for (I). The phen and H atoms have been omitted for clarity.

Table 1

Selected interatomic distances (Å).

Co1-O1	2.047 (3)	Co1-N2	2.113 (4)
Co1-O6 ⁱ	2.151 (3)	S1-O5	1.446 (3)
Co1-O1w	2.032 (3)	S1-O6	1.450 (3)
Co1-O2w	2.151 (3)	S1-O4	1.464 (3)
Co1-N1	2.132 (4)		

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1w - H1w1 \cdots O4^{ii}$	0.85 (1)	1.87 (1)	2.712 (4)	177 (5)
$O1w - H2w1 \cdots O4^{m}$	0.85 (4)	1.87 (4)	2.724 (4)	178 (5)
$O2w - H1w2 \cdots O5^n$	0.84 (4)	2.00 (4)	2.828 (4)	166 (4)
$O2w - H2w2 \cdots O2$	0.85 (1)	1.89 (2)	2.698 (4)	160 (5)
$O3-H3A\cdots O1$	0.84 (4)	1.80 (3)	2.579 (5)	152 (6)

Symmetry codes: (ii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y, -z + 1.

Table 3

Comparative geometrical parameters (Å) for $[M(\text{Hssal})(\text{phen})(\text{H}_2\text{O})_2]_n$ complexes.

Bond length	(II)	(III)	(IV)
M-Ow	1.9537 (19)	2.0361 (14)	2.2316 (14)
M - Ow	2.418 (2)	2.1615 (14)	2.1255 (14)
M-N	2.010 (2)	2.1288 (16)	2.2659 (15)
M-N	2.017(2)	2.1438 (16)	2.2447 (15)
$M - O(COO^{-})$	1.9529 (17)	2.0373 (13)	2.1174 (13)
$M - O(SO_3^-)$	2.3791 (17)	2.1754 (13)	2.1835 (12)

H-atom parameters constrained

All aromatic H atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The water and hydroxy H atoms were located in a difference Fourier map and were refined with a distance restraint of O-H = 0.85 (1) Å and a fixed isotropic displacement parameter of $U_{iso}(H) = 0.05$ Å².

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the National Natural Science Foundation of China (50073019).

References

- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z. F., Shi, S. M., Hu, R. X., Zhang, M., Liang, H. & Zhou, Z. Y. (2003). *Chin. J. Chem.* 21, 1059–1065.
- Fan, S. R. & Zhu, L. G. (2005). Acta Cryst. E61, m1298-m1300.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.